Previous
Introduction to Statistical Investigations, 2nd Edition

Test Bank For Introduction to Statistical Investigations, 2nd Edition Nathan Tintle

$30.00
Next

Test Bank For Introductory Statistics, 10th Edition  Prem S. Mann

$25.00
Introductory Statistics, 10th Edition

Solution Manuals For Intermediate Statistical Investigations, 1st Edition By Nathan Tintle

$25.00

ISBN: 978-1-119-63442-3

Copyright: November 2020

Category:

Description

TABLE OF CONTENTS

 

Preliminaries Multivariable Thinking and Sources of Variation 1

 

Example P.A: Graduate School Admissions at Berkeley 2

 

Exploration P.A: Salary Discrimination 9

 

Example P.B: Predicting Birth Weights 15

 

Exploration P.B: Housing Prices in Michigan 21

 

1 Sources of Variation 31

 

Section 1.1: Sources of Variation in an Experiment 32

 

Example 1.1: Scents and Consumer Behavior 33

 

Exploration 1.1: Memorizing Letters 40

 

Section 1.2: Quantifying Sources of Variation 44

 

Example 1.2: Scents and Consumer Behavior cont. 44

 

Exploration 1.2: Starry Navigation 50

 

Section 1.3: Is the Variation Explained Statistically Significant? 56

 

Example 1.3: Scents and Consumer Behavior cont. 57

 

Exploration 1.3: Starry Navigation cont. 65

 

Section 1.4: Comparing Several Groups 71

 

Example 1.4: Fish Consumption and Omega-3 72

 

Exploration 1.4: Golden Squirrels 83

 

Section 1.5: Confidence and Prediction Intervals 88

 

Example 1.5: Fish Consumption and Omega-3 cont. 89

 

Exploration 1.5: Golden Squirrels cont. 97

 

Section 1.6: More Study Design Considerations 101

 

Example 1.6: Fish Consumption and Omega-3 (revisited) 101

 

Exploration 1.6: Who Is Spending More Time Parenting on Average? 109

 

2 Controlling Additional Sources of Variation 138

 

Section 2.1: Paired Data 139

 

Example 2.1: Texts vs. Visual Distractions (Facebook vs. Instagram) 140

 

Exploration 2.1: Chip Melting Times 148

 

Section 2.2: Randomized Complete Block Designs 152

 

Example 2.2: What’s All the Fuss about Caffeine? 152

 

Exploration 2.2: Strawberry Storage 164

 

Section 2.3: Observational Studies with Two Explanatory Variables 173

 

Example 2.3: Salary Discrimination cont. 174

 

Exploration 2.3: Car Acceleration 182

 

3 Multi-factor Studies and Interactions 210

 

Section 3.1: Multi-factor Experiments 211

 

Example 3.1: Corporate Credibility, Endorser, and Purchase Intent 212

 

Exploration 3.1: Pig Growth 222

 

Section 3.2: Statistical Interactions 228

 

Example 3.2: Pistachio Bleaching 228

 

Exploration 3.2: Optimizing Ads 239

 

Section 3.3: Replication 248

 

Example 3.3: Optimizing Vitamin C 248

 

Exploration 3.3: Hurricane Names 257

 

Section 3.4: Interactions in Observational Studies 262

 

Example 3.4: Salary Discrimination revisited 262

 

Exploration 3.4: Hopelessness and Exercise 267

 

4 Including a Quantitative Explanatory Variable 294

 

Section 4.1: Quantitative Explanatory Variables 295

 

Example 4.1: Recovering Polyphenols from Grape Seed 295

 

Exploration 4.1: Fatty Acids and DNA 304

 

Section 4.2: Inference for Simple Linear Regression 308

 

Example 4.2: Recovering Polyphenols from Grape Seed cont. 309

 

Exploration 4.2: Fatty Acids and DNA cont. 317

 

Section 4.3: Quantitative and Categorical Explanatory Variables 322

 

Example 4.3: Michigan Housing Prices 323

 

Exploration 4.3: Predicting Height 332

 

Section 4.4: Quantitative/Categorical Interactions 338

 

Example 4.4: Michigan Housing Prices cont. 338

 

Exploration 4.4: FEV and Smoking 344

 

Section 4.5: Multi-level Categorical Variables 348

 

Example 4.5: Diamonds 348

 

Exploration 4.5: Patient Satisfaction 358

 

5 Multiple Quantitative Explanatory Variables 383

 

Section 5.1: Experiments with Multiple Quantitative Explanatory Variables 384

 

Example 5.1: Pistachio Bleaching 384

 

Exploration 5.1: Biodiesel 397

 

Section 5.2: Observational Studies with Multiple Quantitative Explanatory Variables 403

 

Example 5.2: Brain Size and IQ 403

 

Exploration 5.2: SLO Real Estate Data 410

 

Section 5.3: Modeling Nonlinear Associations Part I—Polynomial Models 414

 

Example 5.3: Arctic Sea Ice 414

 

Exploration 5.3: Kentucky Derby Winning Times 419

 

Section 5.4: Modeling Nonlinear Associations Part II—Transformations 421

 

Example 5.4: Salary Discrimination cont. 422

 

Exploration 5.4A: Stopping Distances 424

 

Exploration 5.4B: Kentucky Derby Winning Times cont. 426

 

6 Categorical Response Variable 447

 

Section 6.1: Comparing Proportions 448

 

Example 6.1: Encouraging Organ Donation 448

 

Exploration 6.1: Infant Attachment 460

 

Section 6.2: Introduction to Logistic Regression 465

 

Example 6.2: Smoking and Survival Rates 466

Exploration 6.2: Alcohol Abuse in Ukraine 472

 

Section 6.3: Multiple Logistic Regression Models 476

 

Example 6.3: Smoking and Survival Rates cont. 477

 

Exploration 6.3: Alcohol Abuse in Ukraine cont. 483

 

7 Practical Issues 503

 

Section 7.1: Dealing with the Messes Created by Messy Data 504

 

Example 7.1: Public Health Screening Data for the Omega-3 Index 504

 

Exploration 7.1: Evaluating the Impact of a Water Filter Intervention 516

 

Section 7.2: Multiple Regression with Many Explanatory Variables 524

 

Example 7.2: Predicting Real Estate Prices 524

 

Exploration 7.2: Predicting Changes in Omega-3 Index Values 536

 

Solutions to Selected Exercises 543

 

Index 579

 

 

 

 

Shopping cart

0
image/svg+xml

No products in the cart.

Continue Shopping