Description
- Stress
- 1.1 Introduction
- 1.2 Equilibrium of a Deformable Body
- 1.3 Stress
- 1.4 Average Normal Stress in an Axially Loaded Bar
- 1.5 Average Shear Stress
- 1.6 Allowable Stress Design
- 1.7 Limit State Design
- Strain
- 2.1 Deformation
- 2.2 Strain
- Mechanical Properties of Materials
- 3.1 The Tension and Compression Test
- 3.2 The Stress–Strain Diagram
- 3.3 Stress–Strain Behavior of Ductile and Brittle Materials
- 3.4 Strain Energy
- 3.5 Poisson’s Ratio
- 3.6 The Shear Stress–Strain Diagram
- *3.7 Failure of Materials Due to Creep and Fatigue
- Axial Load
- 4.1 Saint-Venant’s Principle
- 4.2 Elastic Deformation of an Axially Loaded Member
- 4.3 Principle of Superposition
- 4.4 Statically Indeterminate Axially Loaded Members
- 4.5 The Force Method of Analysis for Axially Loaded Members
- 4.6 Thermal Stress
- 4.7 Stress Concentrations
- *4.8 Inelastic Axial Deformation
- *4.9 Residual Stress
- Torsion
- 5.1 Torsional Deformation of a Circular Shaft
- 5.2 The Torsion Formula
- 5.3 Power Transmission
- 5.4 Angle of Twist
- 5.5 Statically Indeterminate Torque-Loaded Members
- *5.6 Solid Noncircular Shafts
- *5.7 Thin-Walled Tubes Having Closed Cross Sections
- 5.8 Stress Concentration
- *5.9 Inelastic Torsion
- *5.10 Residual Stress
- Bending
- 6.1 Shear and Moment Diagrams
- 6.2 Graphical Method for Constructing Shear and Moment Diagrams
- 6.3 Bending Deformation of a Straight Member
- 6.4 The Flexure Formula
- 6.5 Unsymmetric Bending
- *6.6 Composite Beams
- *6.7 Reinforced Concrete Beams
- *6.8 Curved Beams
- 6.9 Stress Concentrations
- *6.10 Inelastic Bending
- Transverse Shear
- 7.1 Shear in Straight Members
- 7.2 The Shear Formula
- 7.3 Shear Flow in Built-Up Members
- 7.4 Shear Flow in Thin-Walled Members
- *7.5 Shear Center for Open Thin-Walled Members
- Combined Loadings
- 8.1 Thin-Walled Pressure Vessels
- 8.2 State of Stress Caused by Combined Loadings
- Stress Transformation
- 9.1 Plane-Stress Transformation
- 9.2 General Equations of Plane-Stress Transformation
- 9.3 Principal Stresses and Maximum In-Plane Shear Stress
- 9.4 Mohr’s Circle-Plane Stress
- 9.5 Absolute Maximum Shear Stress
- Strain Transformation
- 10.1 Plane Strain
- 10.2 General Equations of Plane-Strain Transformation
- *10.3 Mohr’s Circle-Plane Strain
- *10.4 Absolute Maximum Shear Strain
- 10.5 Strain Rosettes
- 10.6 Material Property Relationships
- *10.7 Theories of Failure
- Design of Beams and Shafts
- 11.1 Basis for Beam Design
- 11.2 Prismatic Beam Design
- *11.3 Fully Stressed Beams
- *11.4 Shaft Design
- Deflection of Beams and Shafts
- 12.1 The Elastic Curve
- 12.2 Slope and Displacement by Integration
- *12.3 Discontinuity Functions
- *12.4 Slope and Displacement by the Moment-Area Method
- 12.5 Method of Superposition
- 12.6 Statically Indeterminate Beams and Shafts
- 12.7 Statically Indeterminate Beams and Shafts – Method of Integration
- *12.8 Statically Indeterminate Beams and Shafts – Moment-Area Method
- 12.9 Statically Indeterminate Beams and Shafts – Method of Superposition
- Buckling of Columns
- 13.1 Critical Load
- 13.2 Ideal Column with Pin Supports
- 13.3 Columns Having Various Types of Supports
- *13.4 The Secant Formula
- *13.5 Inelastic Buckling
- *13.6 Design of Columns for Concentric Loading
- *13.7 Design of Columns for Eccentric Loading
- Energy Methods
- 14.1 External Work and Strain Energy
- 14.2 Elastic Strain Energy for Various Types of Loading
- 14.3 Conservation of Energy
- 14.4 Impact Loading
- *14.5 Principle of Virtual Work
- *14.6 Method of Virtual Forces Applied to Trusses
- *14.7 Method of Virtual Forces Applied to Beams
- *14.8 Castigliano’s Theorem